Discussion

As can be seen in Figure 1, the structure consists of layers of Sb_2F_7 ⁻ dimers separated by layers of Cs ⁺ ions. Also shown is the structure as proposed by Bystrom and Wilhelmi. Comparison of the two structures shows the metric relationships between the heavy atoms to be approximately the same, but the fluorine positions are grossly different. Table I1 shows the distances for cesium coordination.

 α Least-squares errors are 0.002 Å.

Figure 2 shows the distances and angles in the Sb_2F_7 ⁻ ion. The idealized geometry of the ion can be described as two trigonal bipyramids joined by an axial corner. The lone pairs of electrons are apparently contained in the

Figure 2.—Distances and angles in the $Sb_2F_7^-$ ion.

equatorial plane. The closest nonbonded Sb-F distance is *2.77* A

The F_{ax} -Sb- F_{ax} angle of 151.6° and the F_{eq} -Sb- F_{eq} angle of 90.5° are both drastically distorted from the values for an ideal trigonal bipyramid in such a way as to minimize lone-pair-bond repulsions, $Sb-F_{ax}$ is significantly longer than the average Sb- F_{eq} distance, and the overall conformation of the ion minimizes lone-pairlone-pair repulsions. All of these observations are in accord with the electron-pair repulsion theory of Gillespie and Nyholm,^{18,19} and indeed these features of the geometry have been predicted by others in various attempts to reinterpret the results by Byström and Wilhelmi. The bridging fluorine on the crystallographic twofold axis has an included angle of 125.3° between the antimony atoms at 2.240 **A.** The lack of an obvious stereochemical reason for the bent fluorine bridge supports the thesis that these bridges tend to be bent in the absence of π bonding.²⁰ The nonlinear angle about the fluorine can be rationalized either in the MO scheme in terms of a three-center two-electron bond in which the fluorine orbitals involved are primarily p orbitals or in the valence-bond scheme in terms of the resonance structures $[F_3Sb:F]^{-}SbF_3 \rightleftharpoons F_3Sb[F:SbF_3]^-$ again in which p orbitals on the fluorines are the chief participants

Acknowledgments.--Acknowledgment is due Dr. D. T. Cromer for his assistance with the data collection process.

(18) R J Gillespie and R *S* Nyholm, *Quavt Rev, Chem Sac* , **11, 339** (1957) .

(19) **R** J Gillespie, *J. Chem SOC* ,4672 (1963)

(20) F A Cotton and G Wilkinson, "Advanced Inorganic Chemistry," Interscience, New York, N.Y., 1966, p 381.

CONTRIBUTION FROM THE ANORGANISCH-CHEMISCHES INSTITUT DER UNIVERSITÄT, GÖTTINGEN, GERMANY

The Crystal Structure of Tellurium Tetrachloride

BY BRUNO BUSS AND BERNT KREBS*

Receined *April 27, 1971*

The crystal structure of tellurium tetrachloride has been determined from three-dimensional X-ray data collected by counter methods. The compound crystallizes in space group C2/c of the monoclinic system with $a = 17.076$, $b = 10.404$, $c = 15.252$. \AA , β = 116.82°. The unit cell contains 16 formula units of TeCl₄. Calculated and observed densities are 2.959 and 2.96 g/cm³, respectively. The data have been collected for a twinned crystal and have been reduced according to the kind of twinning. The structure has been refined by least-squares methods to a final R factor of 0.061 for 2948 nonequivalent reflections. The structure consists of isolated tetramers, Te_1Cl_{16} , which have a cubane-like structure with approximate T_d symmetry and with Te and Cl atoms occupying alternating corners of the cubane skeleton. Every Te atom has three neighboring terminal C1 atoms with an average distance of 2.311 Å. With these it is forming an equilateral trigonal pyramid. The coordination of the Te is completed to a distorted octahedron by three bridging chlorine atoms with much longer Te-Cl bond lengths (average 2.929 Å). In the polar limiting case the structure may be described, in a rough approximation, as an arrangement of TeCl3+ions with nearly C_{3v} symmetry and of Cl $^-$ ions. The structure data suggest possible concentration of the nonbonding Te electrons toward the center of the cubane skeleton. From the unexpected crystal structure some unexplained properties of solid tellurium(IV) chloride (correctly formulated tetra-u_i-chloro-tetrakis[trichlorotellurium(IV)]) can be understood.

In the last few years a large number of papers on possible structures of the solid selenium and tellurium tetraabsence of direct X-ray structure determinations it was chlorides and -bromides have been published, but in the (1) D. P. Stevenson and V. Schomaker, *J. Amer. Chem. Soc.*, 62, 1267

Introduction impossible to give an unequivocal interpretation of the partly controversial results.

> According to an early electron diffraction investigation' tellurium tetrachloride is monomeric in the vapor (1940).

state with C_{2v} symmetry of the molecule. The molecule can be described as a trigonal bipyramid with the lone pair located at one of the equatorial positions.

This structure which is also known to be present in gaseous SF_4 and SeF_4 agrees with predictions based on valence-shell electron pair repulsion considerations.2 All available results show that in solid $TeCl₄$ the stereochemical influence of the inert electron pair is evidently more complex.

The dipole moment of the tetrachloride in benzene solution,^{δ} its solubility in nonpolar solvents, δ the nuclear quadrupole resonance spectrum,⁵ and Raman together with infrared spectra^{6,7} have been put forward as proof in favor of an essentially C_{2v} molecular structure in the solid state.

On the other hand molten tellurium tetrachloride conducts electricity.⁸ Most of the authors^{$9-14$} reporting Raman and far-infrared spectra interpret their results on molten, solid, and dissolved TeCl₄ as being consistent with an ionic formulation $TeCl₃+Cl₋$, where the cation has a pyramidal (C_{3y}) structure. A strong argument in support of this was the remarkable similarity of the vibrational frequencies for the TeCl₃ ion with those for the isoelectronic antimony trichloride, **57** hich has been shown¹⁵ by structural analysis to form a trigonal pyramid with C_{3v} symmetry. Additional evidence for different structure models has been derived from studies of $TeCl₄$ solutions in polar and nonpolar solvents¹⁶⁻²⁰ or from bonding considerations on the methyltellurium chlorides. 21

Attempts have already been made to determine the crystal structures of the tetrachloride and the tetrabromide²²⁻²⁴ as well as that of the tetraiodide²⁵ by single-crystal X-ray methods. The lattice parameters and space groups have been reported, but because of crystal twinning and problems of strong pseudosymmetry it was impossible to solve the complete structures

- (2) R. J. Gillespie and R. S. Syholm, *Quail.* Rea., Chem. *Soc.,* **11,** 339 (1957); R. J. Gillespie, *J.* Chem. *Soc.,* 4672 (1963).
- **(3)** C. P. Smyth, **A.** J. Grossmann, and S. R. Ginsburg, *J.* Anzei- *Chejn.* Soc., **62,** 192 (1940); K. A. Jensen, *2.* Anorg. *Allg. Chem., 260,* 245 (1943).
- (4) See "Gmelins Handbuch der anorganischen Chemie," Vol. IV, System No. 11, Verlag Chemie, Berlin, 1940.
	- *(5)* **A.** Schmitt and W. Zeil, **Z.** *Salzofo~sch.* **A,, 18,** 428 (1963).
	- (6) G. C. Hayward and P. J. Hendra, *J. Chein. Soc. A,* 643 (1967).
	- *(7)* E. A. Robinson and J. A. Ciruna, *Caiz. J.* Chem., **46,** 3197 (1968).
	- **(6)** A. Voigt and W. Biltz, *Z. Anoug. AIlr. Chenr., 133,* 298 (1924).
- (9) H. Gerding and H. Houtgraaf, *Red. TYQV. Chinz. Pays-Bas,* **73,** 737, 759 (1954).
	- (IO) N. Katsaros and J. **W.** George, *Chem. Commun.,* 613 (1965).
- (11) N. N. Greenwood, B. P. Straughan, and A. E. Wilson, *J. Chem. Soc.* A, 1479 (1966).
	- (12) D. M. Adams and P. J. Lock, *ibid., A,* 145 (1967).
	- (13) I. R. Beattie and H. Chudzynska, *ihid., A,* 984 (1967).
- (14) J. W. George, N. Katsaros, and K. J. Wynne, *Inovg. Chein.,* **6,** 903 (1967).
- (15) I. Lindqvist and **A.** Kigg!i, *J. Iiiorg. XZLC~, Chem.,* **2, 345** (1956).
- **(16)** D. A. Couch, P. S. Elmes, J. E. Fergusson, M. L. Greenfield, and C. J. Wilkins, *J. Chent. Soc.* **A,** 1813 (1967).
- (17) pi. **AT,** Greenwood, B. P. Straughan. and A. E. Wilson, *ibid., A,* 2209 (1968).
- (18) N. Katsaros and J. **W.** George, *Inorg. Chim.* Acta, **3,** 165 (1969).
- (19) I. R. Beattie, P. J, Jones, and &I. Webster, *J. Chem. Soc. A.* 218 (1969).
	- (20) I. R. Beattie, I. R. Horder, and P. J. Jones, *ibid., A.* 329 (1970).
	- (21) K. J. Wynne and P. S. Pearson, *Iizoig. Chem.. 9,* 106 (1970).
- (22) **A.** W. Cordes, R. F. Kruh, E. K. Gordon. and M. K. Kemp, *Acta C~~lallogv.,* **17,** 756 (1964).
- (23) P. Xhodadad, P. Laruelle, and J. Flahaut, C. *R. Acad. Sci., 269,* 794 (24) C. B. Shoemaker and S. C. Abrahams, Acta Crystallogr., 18, 296 (1964).
- (1965).
- (25) **W** R. Blackmore, S. C. Abrahams, and J. Kalnajs, *ibid.,* **9,** 295 (1956).

and to distinguish between the proposed more ionic (C_{3v}) and more covalent (C_{2v}) structural models.

The structure of tellurium tetrafluoride has been reported recently.26 In it each tellurium atom is surrounded by three terminal and two bridging fluorine atoms arranged at the apices of a distorted square pyramid. The cis-bridging fluorine atoms link these units into endless chains.

In order to get a quantitative structural basis for the discussion of the previous conflicting results on $TeCl₄$ (and also on SeCl₄ and TeBr₄) we started an X-ray structure analysis on tellurium tetrachloride. As part of our structural investigations on the stereochemical influence of the nonbonding electron pairs in $S(IV)$, Se(IV), and Te(1V) compounds, the results are reported here.²⁷

Measurement and Reduction of the X-Ray Data

TeC14 was prepared by direct reaction of the elements.28 It was purified by vacuum sublimation and was recrystallized from benzene. The composition was checked by chemical analysis Because $TeCl₄$ is very sensitive to hydrolysis, all operations had to be done with careful exclusion of moisture The needleshaped (elongated along c) colorless, transparent crystals were sealed in Lindemann capillaries to prevent hydrolysis.

Despite a long search it was impossible to find any suitable single crystals. The crystals are invariably twinned on (100) (see below). This is in accordance with the results reported by previous authors.22-24 After a preliminary survey had shown that thc intensities could be evaluated quantitatively in spite of the twinning, it was decided to use a twinned crystal for data collection,

Weissenberg and precession photographs indicated Laue symmetry *2jm.* Taking into account the principle of twinning the systematic absences were found to be *hkl* with $h + k = 2n + 1$ and $h0l$ with $l = 2n + 1$. This is consistent with the centrosymmetric space group $C2/c-C_{2h}$ ⁶ (no. 15) and the corresponding noncentrosymmetric one $C_c-C_s^*$ (no. 9). C_2/c being the correct choice was initially suggested by intensity statistics and confirmed later in the course of the structure determination. The monoclinic unit cell has the following parameters (at 20°, obtained by least-squares refinement of diffractometer settings for 20 reflections; errors given are 3σ): $a = 17.076$ (8), $b =$ 10.404 (5), $c = 15.252$ (8) \AA , $\beta = 116.82$ (5)^o. Space group and cell dimensions are in good accord with those reported earlier **.22-24**

The density was determined pycnometrically (cyclohexane) to The density was determined pychometrically (cyclonexane) to
be $d_m = 2.96 \pm 0.02$ g/cm³. Previous literature values are
around 3.01 g/cm³.^{23,29} With 16 TeCl₄ formula units in the cell the calculated density is $d_x = 2.959 \text{ g/cm}^3$. The twinned crystal used for the quantitative measurements had the dimensions 0.14 \times 0.20 \times 0.36 mm. Intensity data were collected on a computer-controlled Hilger-Watts four-circle diffractometer (Mo K radiation, $\lambda(K\alpha_1)$ 0.70926 Å, Zr filter, ω -2 θ scan method, scintillation counter, pulse height discrimination). The receiving aperture was 3.5 mm in diameter. The ω and 2θ circles were scanned for 240 sec in steps of *0.02'* over 0.96' in *8,* with a takeoff angle of 3.5'. Individual background counts **(24** sec each) were taken at each end of the scan. *h* standard reflection was measured every 30 reflections to ensure stability of operation. The source to crystal and crystal to counter distances were 21 cm and 30 cm. respectively. The mosaic spread of the peaks was within normal limits, as indicated by a narrow-source, open-counter peak width of $\theta = 0.07-0.09^{\circ}$ for an average reflection.

A complete set of unique data within the sphere (sin θ)/ λ < 0.66 Å^{-1} was recorded for both parts of the twin, yielding a total of 2948 nonequivalent reflection intensities reduced to one individuum. The linear absorption coefficient for Mo K_{α} radiation

- (28) G. Brauer, Ed., "Handbook of Preparative Inorganic Chemistry,"
Vol. I, 2nd ed, Academic Press, New York, N. Y., 1963.
- (29) *0.* Honigschmid and H. Baudrexler, Z. *Anorg. Allg. Chem.,* **223,** 91 (1935).

⁽²⁶⁾ **A.** J. Edwards and F. I. Hewaidy, *J.* Chem *Soc. A,* 2977 (1968).

⁽²⁷⁾ B. Buss and B. Krebs, *Angew.* Chem., **82, 446** (1970); *Angew.* Chein., Int. *Ed. Engl.,* **9,** 463 (1970).

TABLE I

FINAL ATOMIC POSITIONAL AND THERMAL PARAMETERS **(x105** EXCEPT *B)* FOR Te₄Cl₁₆ with Estimated Standard Deviations^a

Atom	x			β_{11}	β_{22}	Взз	β_{12}	β_{13}	β_{23}	B, \mathring{A}^2
Te(1)	35,786(3)	52,737(5)	18,100(4)	258(2)	744(5)	406(3)	54(2)	131(2)	35(3)	2.92(2)
Te(2)	49,736 (3)	23,303(5)	10,886(4)	269(2)	675(5)	359(3)	6(2)	131(2)	$-22(3)$	2.73(2)
Cl(1)	25, 487 (17)	52,549(30)	1,738(20)	371 (11)	1477 (34)	517(14)	58(14)	97(10)	81 (17)	4.79(8)
Cl(2)	25,735(17)	51,449 (28)	24,339 (22)	376(10)	1428 (32)	689 (17)	116(15)	279 (11)	76 (19)	4.67(7)
Cl(3)	36,607(21)	74,968 (26)	18,933 (24)	646 (16)	905(25)	753 (18)	67(15)	309(14)	65(17)	5.18(8)
C1(4)	36,655(14)	24,820 (23)	18,444(17)	306(9)	947(22)	463(12)	$-68(10)$	155(9)	$-30(12)$	3.48(5)
Cl(5)	49,963 (15)	51,275(22)	12,160(17)	369(9)	843 (20)	475 (12)	$-1(11)$	187(9)	71 (12)	3.54(5)
Cl(6)	49.911 (20)	1.150(24)	12,263(21)	635(14)	800(21)	604(15)	1(14)	285(12)	$-5(14)$	4.44(7)
Cl(7)	60,643(17)	24.076 (25)	5,850(20)	373(10)	1146(26)	619(15)	87(13)	266(10)	81(16)	4.10(6)
Cl(8)	38,345(16)	23,841 (26)	95,284(18)	379(10)	1207 (27)	407(12)	$-38(13)$	84 (9)	33(14)	4.09(6)
. A The discussed in the control of the automatic control of the control of the state of the following computation $72 - 1 - 1 - 1 = 1 - 1 = 1 - 1 = 1 - 1 = 1$										

^aEsd's here and in succeeding tables are given in parentheses in units of the least significant digits. *B* values are taken from the last refinement cycle before the anisotropic temperature factors were introduced in the analytical form: $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 +$ $2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl$].

is $\mu = 66.9$ cm⁻¹; the minimum and maximum absorptions for the crystal used are $\mu R = 0.47$ and $\mu R = 1.46$. An absorption correction was applied, the crystal faces in the elongated prism being (100) , (010) , and, as an approximation to the plane produced by the combination of the (001) faces of the (polysynthetic) twins, $(10\overline{2})$. No correction was applied for extinction. The data were reduced by Lorentz and polarization corrections to relative F_o values in the usual way and brought to an approximate absolute scale according to the Wilson method.

Twinning.-The TeCl₄ crystals are twinned on (100) (cf. ref 22); *i.e.*, crystal A and crystal B³⁰ have the crystallographic bc plane as their common mirror plane. The fit of the two mirrored lattices is close to ideal. The short diagonal of the *ac* plane (17.005 A) corresponds closely to the length of cell edge *a,* the angle between this diagonal and c (63.66°) is close to 180- β , and the direction $[102]$ forms an angle of 89.70° with the c axis. Figure 1 shows a general reciprocal lattice plane $(k = 2n)$ of a

Figure 1.-Solid TeCl₄: superposition of two reciprocal lattice levels $(k = 2n)$ produced by twinning on (100).

twinned crystal. Three types of reflections are present: (I) with $l = 2n + 1$ for crystal A, (II) with $l = 2n + 1$ for crystal B, (III) with $l = 2n$ for crystal A, almost ideally coinciding with B reflections of the same type. The indices of the overlapping A and B reflections of type I11 are related to each other by the transformation matrix

To obtain precise intensity data, slightly different orientation matrices were used for data sets I and 11; the mean value of the two matrices was used to collect set 111.

Detailed analyses of the peak profiles of some high-angle reflections showed that, under the measuring conditions used,

the fully integrated intensities of both overlapping reflections in data set I11 were recorded without loss of precision. Data sets I and II were used to calculate the scale factor $(A:B = 3.79)$ for the intensity reduction of set I11 to one individuum.

Determination and Refinement of the Structure

The interpretation of the three-dimensional Patterson synthesis was ambiguous because the structure has marked pseudosymmetries, but with the knowledge of the kind of twinning it could be assumed that Te and C1 atoms would be concentrated especially on the mirror planes. Under the assumption of centrosymmetry it was possible to find the positions of the two tellurium atoms. After some refinement of their parameters, subsequent difference Fourier maps yielded eventually the *x* and *z* parameters of all C1 atoms. The y parameters could not be fixed unambiguously from the Patterson function. Several possibilities have been calculated from which all y parameters finally resulted.

The subsequent three-dimensional least-squares refinement of all atoms was carried out with isotropic thermal parameters. Later the anisotropic vibration was taken into account. The atomic scattering factors of Te and C1 were used as given by Ibers in ref 31. Anomalous dispersion corrections were applied for Te, using the $\Delta f'$ and $\Delta f''$ values calculated by Cromer.^{32,33}
The expression minimized was $\sum w(|F_0| - |F_c|)^2$. The weighting The expression minimized was $\Sigma w(|F_0| - |F_0|)^2$. The weighting scheme was based on the standard deviations *g* of the reduced counting rates with an additional term, being proportional to the net intensity: $w = 4F_0^2/[\sigma(F_0^2)]^2$ with $\sigma(F_0^3) = ([\sigma(I)]^2 +$ $(0.03I)^2$ ¹/²(1/*Lp*). An analysis of the residuals showed this scheme to be adequate. Only reflections with $I < 2\sigma(I)$ were treated as unobserved (225 reflections) and given zero weight.

With isotropic temperature factors the least-squares refinement converged to the following *R* values (including zero reflections): converged to the following *R* values (including zero reflections):
 $R_1 = \sum (||F_o| - |F_o||)/\sum |F_o| = 0.089, R_2 = (\sum w(|F_o| - |F_o|)^2)/\sum wF_o^2)^{1/2} = 0.087.$ Taking the anisotropic thermal vibration into account the final *R* values resulted: $R_1 = 0.066$, $R_2 =$ 0.061.

Application of Hamilton's statistical test³⁴ on R_2 indicates that this improvement highly justifies the significance of the anisotropic vibration data. There was no significant difference in the *R* factors for the directly measured data sets I and 11, in comparison with those of set I11 which were obtained by difference. A final three-dimensional difference Fourier synthesis did not show any significant peaks higher than 3 $e^{- \hat{A} - 3}$ (about 10% of Cl peak height). The standard error of an observation of unit weight is $3.2 e^-$.

The final positional and thermal parameters after the refinement, including the standard deviations obtained from the inverse matrix, are summarized in Table I. Table **I1** gives the

(31) "International Tables for X-Ray Crystallography," Vol. 111, Ky noch Press, Birmingham, England, 1962.

(32) D. T. Cromer, *Acta Cvystallogv., 18,* 17 (1965).

(33) Besides our own programs, modified versions of programs from the Brookhaven National Laboratory system were used, among them the BNL version of the FORDAPER Fourier program written by **A.** Zalkin, the Ibers-Hamilton version (Acta Crystallogr., 17, 781 (1061)) of the Busing-Martin-Levy program ORFLS, the Busing-Martin-Levy ORFFE program, the absorption program GONO9 by W. C. Hamilton, and the Schomaker-Trueblood rigid-body analysis program **TLS6.** We thank Dr. W. C. Hamilton for supplying the programs.

(34) W. C. Hamilton, *Acla Cryslallogv., 18,* 502 (1965).

⁽³⁰⁾ The notations "crystal **A"** and "crystal B" are supposed to symbolize the two different orientations within the twin and do not mean that there are actually only two individua present. The experimental evidence suggests that in the actual crystals we have polysynthetic microtwinning, but in the present considerations this does not make any difference.

Figure 2.—Projection of the structure down the *y* axis. The numbers given are the *y* parameters of the Te atoms in fractions of *b*.

TABLE **I1** PRINCIPAL AXES AND DIRECTIONS OF AXES[®] RMS COMPOXENTS OF THERMAL DISPLACEMENT ALONG

		Rms			
		ampli-			
		tude,			
	Axis	Å		Direction cosines-	
Te(1)	$\mathbf{1}$	0.206	-0.200	-0.918	-0.342
	$\overline{2}$	0.200	-0.514	-0.199	0.834
	3	0.170	-0.834	0.343	-0.432
Te(2)	$\mathbf{1}$	0.196	-0.335	-0.848	0.412
	$\frac{2}{3}$	0.184	-0.508	0.531	0.679
		0.178	-0.794	0.018	-0.608
Cl(1)	$\mathbf{1}$	0.286	0.002	-0.985	-0.173
	$\overline{2}$	0.256	0.805	0.104	-0.584
	$\overline{3}$	0.194	0.593	-0.137	0.793
Cl(2)	$\mathbf{1}$	0.285	-0.169	-0.936	-0.307
	$\frac{2}{3}$	0.251	-0.086	-0.296	0.951
		0.193	-0.982	0.187	-0.030
Cl(3)	$\mathbf{1}$	0.278	-0.965	-0.162	-0.204
	$\overline{2}$	0.267	-0.230	0.170	0.958
	3	0.220	-0.121	0.972	-0.199
Cl(4)	\mathbf{I}	0.231	0.278	-0.955	0.101
	$\overline{2}$	0.213	0.427	0.029	-0.903
	3	0.185	0.860	0.295	0.416
Cl(5)	$\mathbf{1}$	0.226	-0.299	0.749	0.591
	\overline{c}	0.208	-0.882	0.019	-0.471
	3	0.200	-0.364	-0.662	0.655
Cl(6)	$\mathbf{1}$	0.275	-0.968	-0.005	-0.251
	$\overline{2}$	0.235	-0.251	-0.035	0.967
	3	0.209	-0.014	0.999	0.033
Cl(7)	$\mathbf{1}$	0.260	-0.173	-0.826	-0.537
	$\dot{2}$	0.233	-0.062	-0.535	0.843
	3	0.193	-0.983	0.179	0.041
C1(8)	$\mathbf{1}$	0.263	0.443	-0.874	-0.201
	$\overline{2}$	0.238	0.804	0.487	-0.341
	3	0.185	0.396	-0.011	0.918

*^a*Direction cosines refer to an orthogonal coordinate system with axes parallel to a , b , and c^* .

dimensions and orientations of the vibration ellipsoids for all atoms. Observed and calculated structure factor amplitudes are given elsewhere.35

Description of the Structure and Discussion

The crystal structure of tellurium tetrachloride consists of isolated tetramers Te_4Cl_{16} , which have only Cl...Cl van der Waals contacts to neighboring Te_4Cl_{16} molecular units. These tetramers have a cubane-like structure with Te and C1 atoms occupying alternatively the corners of the Te_4Cl_4 cubane skeleton.

In Table I11 bond lengths, bond angles, and nonbonded distances within the Te_4Cl_{16} units are listed together with their estimated standard deviations. In Figure 2 the projection of the unit cell along *b* is shown; Figure 3 gives the configuration and the atomic designations of one Te₄Cl₁₆ molecule.

Figure $3 - Te_4Cl_{16}$ molecular unit (twofold crystallographic axis vertical) with individual bond distances and mean values of chemically equivalent bond angles.

Every Te atom has three neighboring terminal C1 atoms at an average bond length of 2.311 **8.** Together with these it forms an equilateral trigonal pyramid with mean bond angles $Cl(t)-Te-Cl(t)$ of 94.8° (t = terminal). The coordination of tellurium is completed to a strongly distorted octahedron by three bridging C1

⁽³⁵⁾ A listing of structure factor amplitudes will appear immediately following this article in the microfilm edition of this volume of the journal. Single copies may be obtained from the Reprint Department, ACS Publications, **1155** Sixteenth St., N.W., Washington, D. *C.* 20036, by referring to author, title of article, volume, and page number. Remit check or money order for \$3.00 for photocopy 01 S2.00 foi miciofiche.

TABLE 111 INTERATOMIC DISTANCES **(A)** AND BOND ANGLES (DEG) IN THE (WITH STANDARD DEVIATIONS)^{a} Te₄Cl₁₆ MOLECULES OF SOLID TELLURIUM TETRACHLORIDE

Bonded Distances							
$Te(1)-Cl(1)$	2.315(3)	$Te(1)-Cl(4)$	2.908(3)				
$Te(1)-Cl(2)$	2.312	$Te(1)-Cl(5)$	2.947				
$Te(1)-Cl(3)$	2.317	$Te(1)-Cl(5')$	2.898				
$Te(2)-Cl(6)$	2.313	$Te(2)-Cl(4)$	2.944				
$Te(2)-Cl(7)$	2.314	$Te(2)-Cl(4')$	2.959				
$Te(2)-Cl(8)$	2.296	$Te(2)-Cl(5)$	2.916				
Av Te- $Cl(t)$	2.311	Av Te-Cl (b)	2.929				
Nonbonded Distances							
$Te(1) \cdots Te(1')$	4.333(1)	$Te(1') \cdots Te(2)$	4.314(1)				
$Te(1) \cdot \cdot \cdot Te(2)$	4.316	$Te(1') \cdots Te(2')$	4.316				
$Te(1) \cdots Te(2')$	4.314	$Te(2) \cdots Te(2')$	4.265				
		Av	4.309				
$Cl(1) \cdots Cl(2)$	3,430(4)	$Cl(4)\cdots Cl(4')$	4.068(6)				
$Cl(1) \cdot Cl(3)$	3.381	$C1(4) \cdots C1(5)$	3.953(4)				
$Cl(2) \cdots Cl(3)$	3.391	$Cl(4) \cdots Cl(5')$	3.930(4)				
$Cl(6) \cdots Cl(7)$	3.409	$Cl(4') \cdots Cl(5)$	3.930(4)				
$Cl(6) \cdot \cdot \cdot Cl(8)$	3.401	$Cl(4') \cdots Cl(5')$	3.953(4)				
$Cl(7) \cdot \cdot \cdot Cl(8)$	3.400	$Cl(5) \cdot \cdot \cdot Cl(5')$	3.911(6)				
Av $Cl(t) \cdots Cl(t)$	3.402	$Av Cl(b) \cdots Cl(b)$	3.958				
$Cl(1) \cdots Cl(4)$	3.751(4)	$Cl(6) \cdots Cl(4)$	3.742(4)				
$Cl(1) \cdots Cl(5)$	3.744	$Cl(6) \cdots Cl(4')$	3.727				
$Cl(2) \cdots Cl(4)$	3.671	$Cl(7) \cdots Cl(4')$	3.736				
$Cl(2) \cdots Cl(5')$	3 708	$Cl(7) \cdot Cl(5)$	3.721				
$C1(3) \cdots C1(5)$	3.804	$Cl(8) \cdots Cl(4)$	3.673				
$Cl(3) \cdot Cl(5')$	3.699	$Cl(8) \cdots Cl(5)$	3.755				
		$Av Cl(t) \cdots Cl(b)$	3.729				
Bond Angles							
$Cl(1)-Te(1)-Cl(2)$	95.7(2)	$Cl(4)-Te(1)-Cl(5)$	84.9(2)				
$Cl(1)-Te(1)-Cl(3)$	93.7(2)	$Cl(4)-Te(1)-Cl(5')$	85.2(2)				
$Cl(2)-Te(1)-Cl(3)$	94.2(2)	$Cl(5)-Te(1)-Cl(5')$	84.0(3)				
$Cl(6)-Te(2)-Cl(7)$	94.9(2)	$Cl(4)-Te(2)-Cl(4')$	87.1(3)				
$Cl(6)-Te(2)-Cl(8)$	95.1(2)	$Cl(4)-Te(2)-Cl(5)$	84.8(2)				
$Cl(7)-Te(2)-Cl(8)$	95.0(2)	$Cl(4')-Te(2)-Cl(5)$	84.0(2)				
Av $Cl(t)-Te-Cl(t)$	94.8	Av $Cl(b)-Te-Cl(b)$	85.0				
$Te(1)-Cl(4)-Te(2)$	95.1(2)	$Te(1)-Cl(5)-Te(1')$	95.7(3)				
$Te(1)-Cl(4)-Te(2')$	94.7(2)	$Te(1)-Cl(5)-Te(2)$	94.8(2)				
$Te(2)-Cl(4)-Te(2')$	92.6(3)	$Te(1')-Cl(5)-Te(2)$	95.8(2)				
		Av	94.8				

^{*6*} The coordinates of the atoms with primed indices are related to the data of Table I by the transformation \bar{x} , y , $\frac{1}{2} - \bar{z}$. lated to the data of Table I by the transformation \bar{x} , y , $1/y - z$.
Cl(t) = terminal chlorine; Cl(b) = bridge chlorine.

atoms of the Te_4Cl_4 cube with much larger bond distances (average 2.929 Å) and mean bond angles $Cl(b)$ -Te-Cl(b) of 85.0° (b = bridge). In effect the Te is displaced from the center of the coordination octahedron parallel to a C_3 axis.

The exact symmetry of the Te₄Cl₁₆ unit is C_2 (twofold axis along b); deviations from the idealized T_d symmetry are only very small, however significant within the limits of accuracy (see Table 111).

If the cubane-like Te_4Cl_4 skeleton is formally regarded as two interpenetrating tetrahedra, the radial distortion of the cube is such that the Te_4 tetrahedron (mean $Te \cdots Te 4.309$ Å) is significantly larger than the one with 4 C1 at its corners (mean $Cl \cdots Cl$ 3.958 Å).

The Te-Cl(t) bond distances are only slightly shorter than the corrected sum of the single covalent bond radii of 2.34 **A,36** showing that approximately (predominantly covalent) single bonds are present (see below). The same value within experimental error $(2.33 \pm 0.02 \text{ Å})$ has been found for monomeric TeCl₄ (C_{2n}) in the vapor state.¹ Interestingly, a bond length of 2.31 Å had been estimated by Gerding and Houtgraaf⁹ from spectroscopic data for assumed $TeCl₃$ + ions in solid TeCl₄.

In a recent crystal structure analysis of $TeCl₃+Al-$

 Cl_4 ⁻³⁷ we found Te-C1 bond lengths of 2.276 Å (av) in the pyramidal TeCl₃⁺ ions with three more Cl (from AlCl₄⁻) at a distance of 3.062 Å (av) completing an octahedral coordination around Te. The $T eCl₆²=$ ion for which recent X-ray studies have again confirmed the surprising regular octahedral coordination of Te(1V) by C1 atoms has Te-Cl bond lengths of 2.54 Å.³⁸

 $TeCl₃$ ⁺ (in TeCl₃⁺AlCl₄⁻) and TeCl₆²⁻ may be regarded as the limiting cases in describing the bonding of octahedrally coordinated Te-C1 compounds (parallel to decreasing stereochemical activity of the "inert" pairs of tellurium): three strong covalent and three much longer ionic bonds around Te in $TeCl₃ + A1Cl₄$ (difference between short and long bonds 0.8 A, mean bond length in the octahedron 2.67 *8);* six equivalent covalent bonds (2.54 Å) in TeCl²⁻. Coordination and bonding in solid $TeCl₄$ is intermediate between these extremes. The difference between short and long Te–C1 bonds is 0.6 Å ; the mean bond length in the distorted octahedra is 2.62 Å. It is to be assumed that there is only partial transfer of charge from the bridging chlorines to Te, leaving some polar character in the long bridge bonds. There is, however, no doubt that the description as Te_4Cl_{16} molecular units is a better approximation to the true nature of the compound than, in the polar limiting case, as an arrangement of $T_{\text{e}}Cl_{3}^{+}$ and Cl⁻ ions.

The only other known $Te(IV)$ -C1 bond lengths in similar compounds are 2.480 and 2.541 Å in $(CH_3)_2$ - $TeCl₂$,³⁹ 2.536 and 2.520 Å in trans-TeCl₄(SC(N- $(CH₃)₂)₂$,⁴⁰ and 2.386 and 2.717 Å (mean 2.55 Å) in $(CIC₂H₄)TeCl₃.⁴¹$ They agree qualitatively with the average values for TeC14, but in the absence of knowledge about the electronic structure of $Te(IV)$ compounds and of more data it is difficult to draw quantitative conclusions, $e.g.,$ about possible π -bond contributions.

It is interesting to note that only few of the previous papers on solid TeCl₄¹¹ had taken an oligomeric or polymeric structure explicitly into account but that qualitative predictions given by Wynne and Pearson²¹ on the coordination number of Te in $TeCl₄$ were fully confirmed. Postulating a strong trans effect of the alkyl groups within the series $R_nT eCl_{4-n}$ effective coordination numbers for Te in the solid were expected to be 6 for $n = 0$ and 5 for $n = 1$. Besides $n = 0$ (TeCl₄) the case $n = 1$ was confirmed recently by the structure determination of $(CIC₂H₄)TeCl₃.⁴¹$

The mean bond angles within the terminal $TeCl₃$ groups (C_{3v}) of TeCl₄ (94.8°) are remarkably similar to those in the TeCl₃+ ions of TeCl₃+AlCl₄⁻ (95.0°)³⁷ and in the isoelectronic SbCl₃ molecule in the solid (95.2°) ,¹⁵ suggesting very similar bonding within these groups.

It is difficult to decide on the stereochemical activity of the tellurium nonbonding electron pairs. They may be concentrated in the triangular faces defined by the bridging C1 atoms of the Te_4Cl_{16} cube. This would be supported by the relatively large $Te \cdots Te$ separations within the cube, and it would be analogous to similar

- (38) A. C. Hazell, *Acta Chem. Scand.* 20, 165 (1966); E. E. Aynsley and (39) G. D. Christofferson, R. A. Sparks, and J. D. McCullough, Acta A. C. Hazell, *Chem. Ind. (London),* 611 (1963).
- *Cvystallogr.,* **11, 782** (1958).

(40) *S.* Husebye and J. **W.** George, *Inovg. Chem., 8, 313* **(1969).**

(41) D. Kobelt and E. **F.** Paulus, *Annew. Chem.,* **83,** 81 (1971); *Angea. Chem., Int. Ed. Engl.,* **10, 74** (1971).

⁽³⁶⁾ L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. *Y.,* 1960.

⁽³⁷⁾ B. Krebs, B. Buss, and D. Altena, *Z. Anovg. Allg. Chem.,* in press.

suggestions for $\text{SeF}_3 + \text{NbF}_6 - 42$ and $\text{SeF}_3 + \text{Nb}_2\text{F}_{11} - 43$ It is, however, questionable that the space available toward the center of the Te_4Cl_{16} cube is sufficient to keep four localized electron pairs. More probable is a (at least partial) delocalization. together with a possible involvement, of the "inert" 5s electron pairs in the bonding, as shown for the corresponding $a_{1g}\sigma^*$ electrons in $TeCl_6^{2-}$ and $TeBr_6^{2-}$ from the electronic spectra.⁴⁴ If the tellurium 6s orbitals are used for bonding in TeCl₆²⁻ (in the form of a $5p^35d^26s$ hybridization) this would explain the unusually large difference between the observed bond length (2.54 **A)** and the sum of the normal covalent radii of Te and C1 (about 2.34 Å).³⁶ To what extent and how there is tellurium s electron participation in bonding of TeC14 remains uncertain.

The structure of solid TeCl₄ can also be described as a somewhat distorted cubic close packing with one-fourth of the octahedral voids occupied by Te (see also ref 24). As shown in Table, IV all intermolecular $Cl \cdots Cl$

TABLE Iv PACKING OF THE C1 ATOMS. INTERMOLECULAR NONBONDED

DISTANCES BETWEEN KEIGHBORING CHLORINES

distances are equal to or larger than the sum of the van der Waals radii (3 .BO *8).*

The packing density of the Cl atoms in $TeCl₄$ (37.8 \AA ³) per C1 atom) is smaller than, $e.g.,$ in CdCl₂ (37.4 \AA ³), $ZrCl_4$ (34.8 Å³), LiCl (34.2 Å³), and CrCl₃ (30.0 Å³).⁴⁵

Compounds with a cubane skeleton are known for a variety of elements, although there are only a few structure determinations reported in the literature. 46 Solid tellurium tetrachloride, or, correctly formulated tetra- μ_3 -chloro-tetrakis [trichlorotellurium(IV)], is one of the few purely inorganic cubanes. It is the first example of a group VIa element (except oxygen) in a cubane, it is the first main group cubane with octahedral coordination (type I, according to ref 46a), and it is unique in being the only simple "binary" inorganic cubane.

With the knowledge of the structure of solid TeC14 much of the previous diverging results can be understood. Easy homolytic, heterolytic, or thermal fission which is to be expected from the weak bonding in the

(42) **A.** J. Edwards and G. R. Jones, *J. Chem.* Soc. *A,* 1691 **(1970).**

(43) A. J. Edwards and G. R. Jones, *ibid., A,* 1491 (1970).

(44) D. **A.** Couch, C. J. U'ilkins, G. R. Rossman, and H. B. Gray, *J. Amev. Chem.* Soc., **92,** 307 (1970).

(45) B. Krebs, Z. *Anovg. AZlg. Chem.,* **378, 263** (1970); R. W. G. Wyckoff, "Crystal Structures," 2nd ed, U'iley-Interscience, New York, N. *Y.:* Val. I, 1963; Val. 11, 1964.

(46) (a) For a review see R. S. Nyholm, *&I.* R. Truter, and C. W. Bradford, *Natuve (London),* **228,** 648 (1970); **(b)** D. Mootz, **A.** Zinnius, and B. BBttcher, *Anpew. Chem.,* **81,** 398 (1969); *Angeo. Chem., Int. Ed. Engl.,* **8,** 376 (1969); G. Dittmar and E. Hellner, *Angezo. Chem.,* **81,** 707 (1969); *Angew. Chem., Int. Ed. En&,* **8,** 679 (1969); *AI.* Ziegler and J. U'eiss, *Awgeo. Chem.,* **82,** 931 **(19701, Angew** *Chem., Int. Ed. En&,* **9,** 905 (1970).

cubane skeleton may explain such properties as electric conductivity in the melt,⁸ measured nonzero dipole moments in solution,³ solubility in polar and nonpolar solvents, and observation of monomers up to tetramers in benzene solution^{13,16-20} (presence of concentration-dependent oligomerization equilibria?). The nature of the fission products is determined by the polarity of the medium and seems to be especially sensitive to traces of moisture, thus complicating the results. Raman spectra indicate that the end product of homolytic fission in solution is the monomeric C_{2v} TeCl₄ molecule as in the gas phase.20

 R aman^{6,9,13} and infrared^{6,11-14} spectra of solid TeCl₄, which could not be interpreted completely on the basis of previously proposed structural models, are possible to be assigned now in terms of the approximate T_d symmetry of the Te_4Cl_{16} unit. Qualitatively, there is a systematic decrease of the Te-C1 stretching vibration frequencies from the TeCl₃⁺ ions in TeCl₃⁺AsF₆⁻ ($v_1(A_1)$) 412, $v_3(E)$ 385 cm⁻¹)⁴⁷ and TeCl₃+AlCl₄⁻ (390, 367 $\text{cm}^{-1})^9$ to those which are observed in the TeCl₄ spectra between 342 and 376 cm⁻¹ and which are concentrated mainly in the terminal $TeCl₃$ groups. For the pair TeCl₃+A1Cl₄^{--TeCl₄ this decrease is paralleled by} an increase in the Te-C1 bond distances within the TeCl₃ groups (2.276-2.311 Å). According to the vibrational spectra, an even shorter Te-C1 bond distance is to be expected for $TeCl₃ + AsF₆⁻$ (in this sense, the bonding in $TeCl_3 + AsF_6$ ⁻ is closer to the "polar limiting case" than that in $TcCl₃ + AlCl₄-$.

The $35Cl$ nqr spectrum of TeCl₄⁵ which shows two groups of three lines and which was previously interpreted in terms of a monomer C_{2v} structure is readily compatible with the observed tetrameric structure.

Cell constants, space groups, and intensity distribution on the X-ray photographs show that SeCl₄ and TeBr₄ are isostructural with $TeCl₄$ (see also ref 22-24).

Thermal Vibrations.-The thermal parameters (Table **II)** are reasonably consistent within groups of chemically equivalent atoms, the directions of largest vibration for all atoms being roughly tangential to the Te4C14 cube. Consequently, the rigid-body approximation could be applied remarkably well to the whole Te_4Cl_{16} molecular unit, yielding the following tensors describing the libration (deg^2) and translation (A^2) re-

ferred to orthogonal axes parallel to *a*, *b*, and
$$
c^*
$$

\n
$$
\omega = \begin{pmatrix}\n4.78 (54) & 0 & -1.69 (37) \\
4.12 (55) & 0 & 7.32 (48)\n\end{pmatrix}
$$
\n
$$
T = \begin{pmatrix}\n0.0332 (16) & 0 & -0.0047 (11) \\
0.0393 (16) & 0 & 0.0371 (17)\n\end{pmatrix}
$$

with principal rms librations of 2.8, 2.2, and 2.0°. Resulting bond length corrections are smaller than the error of the experimental bond lengths and were ignored.

Acknowledgments.--We thank Professor O. Glemser for support of this work. Financial assistance by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

(47) W. Sawodny and K. Dehnicke, *Z. Anovg. Alig. Chem.,* **349,** 169 (1967).